Measurement and correction of systematic odometry errors in mobile robots

نویسندگان

  • Johann Borenstein
  • Liqiang Feng
چکیده

Odometry is the most widely used method for determining the momentary position of a mobile robot. In most practical applications odometry provides easily accessible real-time positioning information in-between periodic absolute position measurements. The frequency at which the (usually costly and/or time-consuming) absolute measurements must be performed depends to a large degree on the accuracy of the odometry system. This paper introduces practical methods for measuring and reducing odometry errors that are caused by the two dominant error sources in differential-drive mobile robots: (a) uncertainty about the effective wheelbase and (b) unequal wheel diameters. These errors stay almost constant over prolonged periods of time. Performing an occasional calibration as proposed here will increase the robot's odometric accuracy and reduce operation cost because an accurate mobile robot requires fewer absolute positioning updates. Many manufacturers or end-users calibrate their robots, usually in a time-consuming and non-systematic trial and error approach. By contrast, the method described in this paper is systematic, provides near-optimal results, and it can be performed easily and without complicated equipment. Experimental results are presented that show a consistent improvement of at least one order of magnitude in odometric accuracy (with respect to systematic errors) for a mobile robot calibrated with our method. Some parts of the material in this paper were presented at the 1995 International Conference on Intelligent Robots and Systems (IROS '95), Pittsburgh, Pennsylvania, August 5-9, 1995; some other parts were presented at the 1995 SPIE Conference on Mobile Robots, Philadelphia, October 22-26, 1995.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental Analysis for Measuring Errors in Wheeled Mobile Robots (RESEARCH NOTE)

This paper presents experimental analysis of wheeled mobile robots. Mathematical modelling of the mobile robot is presented. The mobile robots consist of an omni-directional and three differential drive mobile robots are tested and moved in given trajectories and the systematic errors of the robots are determined. A new method for omni-direction mobile robot was introduced in which the robot wa...

متن کامل

A New Approach to Self-Localization for Mobile Robots Using Sensor Data Fusion

This paper proposes a new approach for calibration of dead reckoning process. Using the well-known UMBmark (University of Michigan Benchmark) is not sufficient for a desirable calibration of dead reckoning. Besides, existing calibration methods usually require explicit measurement of actual motion of the robot. Some recent methods use the smart encoder trailer or long range finder sensors such ...

متن کامل

UMBmark: a benchmark test for measuring odometry errors in mobile robots

This paper introduces a method for measuring odometry errors in mobile robots and for expressing these errors quantitatively. When measuring odometry errors, one must distinguish between (1) systematic errors, which are caused by kinematic imperfections of the mobile robot (for example, unequal wheel-diameters), and (2) non-systematic errors, which may be caused by wheel-slippage or irregularit...

متن کامل

Experimental results from internal odometry error correction with the OmniMate mobile robot

This paper presents experimental results of test with a new method for detecting and correcting odometry errors without inertial or external-reference sensors. This method, called Internal Position Error Correction (IPEC), has been implemented on a new, commercially available mobile robot called “OmniMate,” which was specifically designed for the implementation of the IPEC method. The results p...

متن کامل

Correcting Odometry Errors for Mobile Robots Using Image Processing

The mobile robots that are moving in partially known environments have a low availability, the mean time between failures being around 17.5 hours. From the total number of failures, 25% are localization failures caused mainly by odometry errors. Without a proper odometry error correction procedure, a wheeled mobile robot is not able to determine correctly its position and therefore it is lost. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Robotics and Automation

دوره 12  شماره 

صفحات  -

تاریخ انتشار 1996